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« Challenges in composite reward design
o oObjective terms are competing (fuel & travel time)

Absiract

* Multi agent reinforcement
learning approach to learn

Methodology Results

o rate of change of the two reward terms are different
in different regions of the composite objective
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- 18% reduction in fuel

- 25% reduction in CO,

- 20% increase in speed
Even 25% CAV penetration

can bring at least 50% of the

total fuel and emission
reduction benefits.

« V-IDM: vanilla IDM car following model
* N-IDM:IDM model with noise (variability in driving)
« M-IDM: IDM with noise and varying parameters
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State Ste1 « Eco-CACC: a mode-based trajectory optimization
Fuel Model: VT-CPFM Emission model: HBEFA-v3.1

Questions
« QI1: How does the proposed control policy
compare to naturalistic driving and model-based
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Intfroduction « |In multi-agent RL, each agent has a policy control baselines?
» Transportation sector in the . s : : : : * Q2: How well does the proposed control policy Conclusion
US tributes 29% to th Eco-driving at signalized intersections eneralize to environments unseen af fraining fimee i : :
contributes 27/ 10 the , 9 S ‘1|- Significant savings in fuel,
GHG emission in which 77% Markov Decision Process < 35 35 emission while even
Q Y "
is due to land transportation. 12V (MDP) 8301 Q1 iR 5301 Q2 improving travel speed.
. —_._communication e I PR T 251 e + i il
Previous studies on eco- | \ va2yv . State: LI — 3 gzo- ,,,,,,, T 5 Sj;l ei;?]éasg':yo?f learn
. - : S communication : : € 15 KNS = Y i - Ol-
ariving ar signalized o o ego-vehicle velocity £ 10- W | EPe distribution settings is
Intersections, T o ego-vehicle posifion ] %5*: 2 1‘5’ o A successful
model-based o lead vehicle velocity £ 0] Speed N o . e oM Future work: National
use simplified objectives o lead vehicle position < V-IDM N-IDM  M-IDM  Eco-CACC ~ 25 50 75 100 : ;
solve a non-linear followi nicl oci Baseline CAV penetration % level impact assessment
ootimization broblem « Action: 0 -:o”ow!ng veh!cle Ve C?TC.:' Y = 35 35 as a climate change
.rﬁ g P o acceleration o Tolowing venicie Position s ., Qo = §30 90 : intervention
INn real time a € (A, di) O |mf? to green O e R T e 525_ po
. . T . S z,‘j:z{{: _______ i o
Our reinforcement learning + Reward: o fraffic phase EO) g 20" R 3| Acknowledgements
: - , 151 gz S15{ I
approach is model-free and R, if any vehicle stops at the start of a lane. § 0 : ks 12 el Mark Taylor, Blaine L d
.. : , A 10- o V-IDM IR e V- . ark Taylor, Blaine Leonard,
opfimize fuel consumption R, if average fuel < &8 A average stops = 0. ||g | o NDM | & | — NN Y .
while reducing the impact r(s,a) =5 . © o miou | o 2 - DM Matt Luker and Michael
UCing © R; if average fuel < 6 A average stops >0 [= o o - 6o O = = - Sheffield at Utah Departmen
on fravel time. kR4 otherwise CAV penetration % CAV penetration % of Transportation.




